Skip to main content

Getting Started in Quantum Optics

  • Textbook
  • © 2022

Overview

  • Introduces quantum optics at undergraduate level with only minimal prerequisites
  • Includes worked examples and exercises, with a solutions manual for instructors
  • Can be taught to undergraduates or beginning graduate students in a single semester
  • Request lecturer material: sn.pub/lecturer-material

Part of the book series: Undergraduate Texts in Physics (UNTEPH)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (21 chapters)

Keywords

About this book

This book, based on classroom-tested lecture notes, provides a self-contained one semester undergraduate course on quantum optics, accessible to students (and other readers) who have completed an introductory quantum mechanics course and are familiar with Dirac notation and the concept of entanglement. The book covers canonical quantization, the harmonic oscillator, vacuum fluctuations, Fock states, the single photon state, quantum optical treatment of the beam splitter and the interferometer, multimode quantized light, and coherent and incoherent states. Metrology is a particular area of emphasis, with the book culminating in a treatment of squeezed light and its use in the laser interferometer gravitational-wave observatory (LIGO). The Heisenberg limit is described, along with NOON states and their application in super-sensitivity, super-resolution and quantum lithography. Applications of entanglement and coincidence measurements are described including ghost imaging, quantum illumination, absolute photodetector calibration, and interaction-free measurement. With quantum optics playing a central role in the so-called “second quantum revolution,” this book, equipped with plenty of exercises and worked examples, will leave students well prepared to enter graduate study or industry.

Authors and Affiliations

  • Hamilton, Canada

    Ray LaPierre

About the author

Ray LaPierre attended Dalhousie University, Canada, where he obtained a B.Sc. degree in Physics in 1992. He then completed his M.Eng. degree in 1994 and Ph.D. degree in 1997 in the Engineering Physics Department at McMaster University, Canada. His graduate work involved development of molecular beam epitaxy of compound semiconductor alloys for laser diodes in telecom applications. Upon completion of his graduate work in 1997, he joined JDS Uniphase, Canada, where he developed dielectric coatings for wavelength division multiplexing devices. In 2004, he rejoined McMaster University as an Assistant Professor in the Engineering Physics Department. He is currently Professor in the Engineering Physics Department at McMaster with interests in III-V nanowires, molecular beam epitaxy, and applications in photovoltaics, photodetectors and quantum information processing.

Bibliographic Information

Publish with us