Skip to main content
Book cover

Mathematical Modeling for Epidemiology and Ecology

  • Textbook
  • © 2023

Overview

  • Includes the author's own research in vaccination modeling and models for COVID-19 along with standard models
  • Includes detailed examples as case studies, sets of linked problems, and end-of-chapter projects
  • A comprehensive introduction to mechanistic modeling

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

  1. Mathematical Modeling

  2. Dynamical Systems

Keywords

About this book

Mathematical Modeling for Epidemiology and Ecology provides readers with the mathematical tools needed to understand and use mathematical models and read advanced mathematical biology books.  It presents mathematics in biological contexts, focusing on the central mathematical ideas and the biological implications, with detailed explanations. The author assumes no mathematics background beyond elementary differential calculus. 

An introductory chapter on basic principles of mathematical modeling is followed by chapters on empirical modeling and mechanistic modeling. These chapters contain a thorough treatment of key ideas and techniques that are often neglected in mathematics books, such as the Akaike Information Criterion. The second half of the book focuses on analysis of dynamical systems, emphasizing tools to simplify analysis, such as the Routh-Hurwitz conditions and asymptotic analysis. Courses can be focused on either half of the book or thematically chosen material from both halves, such as a course on mathematical epidemiology.

The biological content is self-contained and includes many topics in epidemiology and ecology. Some of this material appears in case studies that focus on a single detailed example, and some is based on recent research by the author on vaccination modeling and scenarios from the COVID-19 pandemic.

The problem sets feature linked problems where one biological setting appears in multi-step problems that are sorted into the appropriate section, allowing readers to gradually develop complete investigations of topics such as HIV immunology and harvesting of natural resources.  Some problems use programs written by the author for Matlab or Octave; these combine with more traditional mathematical exercises to give students a full set of tools for model analysis. Each chapter contains additional case studies in the form of projects with detailed directions.  New appendices contain mathematical details on optimization, numerical solution of differential equations, scaling, linearization, and sophisticated use of elementary algebra to simplify problems.


Reviews

“This is a well-written book, highly suitable for applied math undergraduate students.” (Stephanie Abo, Chi-Chung Cheung, Ryth Dasgupta, Pritha Dutta, Shervin Hakimi, Amandeep Kaur, Anita T. Layton, Mehrshad Sadria, Melissa Stadt, Vasu Swaroop and Kaixin Zheng)

Authors and Affiliations

  • Department of Mathematics, University of Nebraska-Lincoln, Lincoln, USA

    Glenn Ledder

About the author

Glenn Ledder is Professor Emeritus of Mathematics at the University of Nebraska.

Bibliographic Information

Publish with us