Skip to main content

Plasmon-enhanced light-matter interactions

  • Book
  • © 2022

Overview

  • Covers such key areas as thermoplasmonics, chirality, sensing, , ENZ, nonlinear, hot electron
  • Discusses basic principles as well as emerging applications of surface plasmons
  • Appeals to a wide readership in both science and engineering

Part of the book series: Lecture Notes in Nanoscale Science and Technology (LNNST, volume 31)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

This book highlights cutting-edge research in surface plasmons, discussing the different types and providing a comprehensive overview of their applications. Surface plasmons (SPs) receive special attention in nanoscience and nanotechnology due to their unique optical, electrical, magnetic, and catalytic properties when operating at the nanoscale. The excitation of SPs in metal nanostructures enables the manipulation of light beyond the diffraction limit, which can be utilized for enhancing and tailoring light-matter interactions and developing ultra-compact high-performance nanophotonic devices for various applications. With clear and understandable illustrations, tables, and descriptions, this book provides physicists, materials scientists, chemists, engineers, and their students with a fundamental understanding of surface plasmons and device applications as a basis for future developments.  

 

Editors and Affiliations

  • College of Optoelectronic Technology Chengdu University of Information Technology, Chengdu, China

    Peng Yu

  • School of Physics and Technology, Wuhan University, Wuhan, China

    Hongxing Xu

  • University of Electronic Science and Technology of China, Chengdu, China

    Zhiming M. Wang

About the editors

Peng Yu is currently a research assistant at the School of Optoelectronic Technology of the Chengdu University of Information Technology. He obtained his bachelor’s degree in Microelectronics in 2012, master’s degree in 2015, and Ph.D. degree in 2018. His current research interests include plasmon-enhanced light–matter interactions, photonic sensing.

 

Prof. Hongxing Xu is currently a professor at the School of Physics and Technology, Wuhan University. He received his Bachelors in Physics from Peking University, China, in July 1992, Masters in Physics and Engineering Physics in December 1997 and Ph.D in Science in March 2002 from Chalmers University of Technology, Sweden. In March 2005, he joined Institute of Physics, Chinese Academy of Sciences. His research interests are in surface-enhanced Raman scattering (SERS), single molecule trapping and spectroscopy, nanophotonics, plasmonic properties of metal nanostructures, and those applications in devices.

 

Zhiming M. Wang is currently a professor in the Institute of Fundamental and Frontier Sciences of the University of Electronic Science and Technology of China. He obtained his bachelor’s degree in Applied Physics in 1992, master’s degree in Semiconductor Physics in 1995, and his Ph.D. degree in Condensed Matter Physics in 1998. He did postdoctoral studies in Paul-Drude-Institute for Solid-State Electronics, Berlin, Germany, in 2000. His current research interests focus on epitaxial crystal growth, quantum dots, surfaces, interfaces, and plasmonics

 

 

Bibliographic Information

Publish with us