Overview
- Presents an overview of how the Periodic Table has evolved over the last 150 years
- Contributions from leading international chemistry academics
- Demonstrates how the periodic table has guided chemistry research
Part of the book series: Structure and Bonding (STRUCTURE, volume 182)
Access this book
Tax calculation will be finalised at checkout
Other ways to access
About this book
As 2019 has been declared the International Year of the Periodic Table, it is appropriate that Structure and Bonding marks this anniversary with two special volumes.
In 1869 Dmitri Ivanovitch Mendeleev first proposed his periodic table of the elements. He is given the major credit for proposing the conceptual framework used by chemists to systematically inter-relate the chemical properties of the elements. However, the concept of periodicity evolved in distinct stages and was the culmination of work by other chemists over several decades. For example, Newland’s Law of Octaves marked an important step in the evolution of the periodic system since it represented the first clear statement that the properties of the elements repeated after intervals of 8. Mendeleev’s predictions demonstrated in an impressive manner how the periodic table could be used to predict the occurrence and properties of new elements. Not all of his many predictions proved to be valid, but the discovery ofscandium, gallium and germanium represented sufficient vindication of its utility and they cemented its enduring influence. Mendeleev’s periodic table was based on the atomic weights of the elements and it was another 50 years before Moseley established that it was the atomic number of the elements, that was the fundamental parameter and this led to the prediction of further elements.
Some have suggested that the periodic table is one of the most fruitful ideas in modern science and that it is comparable to Darwin’s theory of evolution by natural selection, proposed at approximately the same time. There is no doubt that the periodic table occupies a central position in chemistry. In its modern form it is reproduced in most undergraduate inorganic textbooks and is present in almost every chemistry lecture room and classroom.
This second volume provides chemists with an overview of the important role played by the Periodic Table in advancing our knowledge of solidstate and bioinorganic chemistry. It also illustrates how it has been used to fine-tune the properties of compounds which have found commercial applications in catalysis, electronics, ceramics and in medicinal chemistry.
Similar content being viewed by others
Keywords
Table of contents (8 chapters)
Editors and Affiliations
About the editor
Bibliographic Information
Book Title: The Periodic Table II
Book Subtitle: Catalytic, Materials, Biological and Medical Applications
Editors: D. Michael P. Mingos
Series Title: Structure and Bonding
DOI: https://doi.org/10.1007/978-3-030-40010-1
Publisher: Springer Cham
eBook Packages: Chemistry and Materials Science, Chemistry and Material Science (R0)
Copyright Information: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
Hardcover ISBN: 978-3-030-40009-5Published: 06 February 2020
Softcover ISBN: 978-3-030-40012-5Published: 06 February 2021
eBook ISBN: 978-3-030-40010-1Published: 05 February 2020
Series ISSN: 0081-5993
Series E-ISSN: 1616-8550
Edition Number: 1
Number of Pages: XI, 242
Number of Illustrations: 45 b/w illustrations, 76 illustrations in colour
Topics: Inorganic Chemistry, Catalysis, Organometallic Chemistry, Medicinal Chemistry, History of Chemistry