Skip to main content

Computational Complexity and Feasibility of Data Processing and Interval Computations

  • Book
  • © 1998

Overview

Part of the book series: Applied Optimization (APOP, volume 10)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (26 chapters)

Keywords

About this book

Targeted audience • Specialists in numerical computations, especially in numerical optimiza­ tion, who are interested in designing algorithms with automatie result ver­ ification, and who would therefore be interested in knowing how general their algorithms caIi in principle be. • Mathematicians and computer scientists who are interested in the theory 0/ computing and computational complexity, especially computational com­ plexity of numerical computations. • Students in applied mathematics and computer science who are interested in computational complexity of different numerical methods and in learning general techniques for estimating this computational complexity. The book is written with all explanations and definitions added, so that it can be used as a graduate level textbook. What this book .is about Data processing. In many real-life situations, we are interested in the value of a physical quantity y that is diflicult (or even impossible) to measure directly. For example, it is impossible to directly measure the amount of oil in an oil field or a distance to a star. Since we cannot measure such quantities directly, we measure them indirectly, by measuring some other quantities Xi and using the known relation between y and Xi'S to reconstruct y. The algorithm that transforms the results Xi of measuring Xi into an estimate fj for y is called data processing.

Reviews

`The book is very well organized. The book is readable, very detailed, and intelligible. Moreover, it is exciting and gripping because the reader is often surprised by unexpected results. Everyone who is interested in modern aspects of numerical computation will enjoy reading this interesting and informative work. The book is a must for everyone who is doing research in this field.'
Mathematical Reviews, 98m

Authors and Affiliations

  • University of Texas at El Paso, USA

    Vladik Kreinovich

  • Computing Center, Russian Academy of Sciences, Irkutsk, Russia

    Anatoly Lakeyev

  • Charles University and Academy of Sciences, Prague, Czech Republic

    Jiří Rohn

  • IBM, Tucson, USA

    Patrick Kahl

Bibliographic Information

Publish with us