Skip to main content
Book cover

Mathematical Modeling of Emission in Small-Size Cathode

  • Book
  • © 2020

Overview

  • Describes a mathematical model of heat transfer in a silicon cathode of small (nano) dimensions
  • Presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation
  • Intended for specialists in the field of heat transfer and field emission processes

Part of the book series: Heat and Mass Transfer (HMT)

  • 1364 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (4 chapters)

Keywords

About this book

This book deals with mathematical modeling, namely, it describes the mathematical model of heat transfer in a silicon cathode of small (nano) dimensions with the possibility of partial melting taken into account.  This mathematical model is based on the phase field system, i.e., on a contemporary generalization of Stefan-type free boundary problems. The approach used is not purely mathematical but is based on the understanding of the solution structure (construction and study of asymptotic solutions) and computer calculations. The book presents an algorithm for numerical solution of the equations of the mathematical model including its parallel implementation. The results of numerical simulation concludes the book. The book is intended for specialists in the field of heat transfer and field emission processes and can be useful for senior students and postgraduates.​

Reviews

“The intended audience for this book includes researchers and specialists working in the field of electron emission processes and heat transfer, but this book also contains many details from the point of view of modeling and the corresponding mathematical architecture that may be useful for advanced students and postgraduates.” (Federico Zullo, Mathematical Reviews, March, 2021)

Authors and Affiliations

  • National Research University Higher School of Economics, Moscow, Russia

    Vladimir Danilov, Roman Gaydukov, Vadim Kretov

About the authors

Vladimir G. Danilov received the Ph.D. degree from the Moscow Institute of Electronics and Mathematics, Moscow, Russia, in 1976, and the D.Sci. degree from Moscow State University, Moscow, in 1990. He is currently a Professor with the National Research University Higher School of Economics, Moscow. His current research interests include linear and nonlinear problems of PDE, asymptotic methods, and mathematical simulation.

Roman K. Gaydukov received the M.S. degree from the Moscow Institute of Electronics and Mathematics, Moscow, Russia, in 2012, and the Ph.D. degree from National Research University Higher School of Economics, Moscow, Russia, in 2016. He is currently an Associate Professor with the National Research University Higher School of Economics, Moscow. His current research interests include asymptotic methods, mathematical and numerical simulation, field emission, fluid mechanics and boundary layer theory.

Vadim I. Kretov received the M.S.degree from the Moscow Institute of Electronics and Mathematics, Moscow, Russia, in 2008, and the Ph.D. degree from National Research University Higher School of Economics, Moscow, Russia, in 2019.  His current research interests include mathematical simulation, field emission, and numerical solution of PDE.



Bibliographic Information

Publish with us