Skip to main content
Book cover

Molecular Orientation and Emission Characteristics of Ir Complexes and Exciplex in Organic Thin Films

  • Book
  • © 2019

Overview

  • Recognized as an outstanding Thesis by the Department of Materials Science and Engineering, Seoul National University
  • Describes how molecular orientation influences electrical and optical properties of molecular films
  • Shows how the optical characteristics of OLEDs are influenced by molecular orientation

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

This thesis considers molecular orientation in thin films and introduces an optical model describing this orientation as applied to organic light-emitting diodes (OLEDs). It also describes the electronic structure of intermolecular charge transfer excitons correlated to molecular orientation in solids.

It has long been known that molecular orientation influences the electrical and optical properties of molecular films. One notable example is in liquid crystals where rigid rod or disk shaped molecules are commonly used. Understanding the origin of the molecular orientation and its control by surface treatment and electric field resulted in the development of liquid crystal displays. The same thing has happened in organic electronics, and considerable effort has been devoted to understanding and controlling molecular orientation in solid films to improve charge carrier mobility and light absorption, ultimately to improve the performance of organic solar cells and thin film transistors.

In contrast, less attention has been paid to molecular orientation and its influence on the characteristics of OLEDs, probably because of the use of amorphous films rather than micro-crystalline films, and it is only in recent years that some molecular films are known to have preferred orientation.  This thesis addresses this topic, focusing on OLEDs, describing the origin and control of the orientation of phosphorescent Ir complexes possessing spherical shape rather than rod or disk shape, the simulation of the optical characteristics of OLEDs influenced by preferred molecular orientation, and finally the orientation of intermolecular charge transfer excitons and its correlation to electronic structures in thin films.


Authors and Affiliations

  • Department of Materials Science and Engineering, The Graduate School, Seoul National University, Seoul, Korea (Republic of)

    Chang-Ki Moon

About the author

Dr. Chang-Ki Moon received the "Best PhD Theses Award in 2017" in the Materials Science and Engineering department at SNU in December 2017, and the “Best Paper Award” of Schrodinger’s 2017 Excellence in Materials Science Applications Publication Contest in Schrodinger Inc. in February 15, 2018.  

Bibliographic Information

Publish with us