Skip to main content
Book cover

Multigrid Methods for Process Simulation

  • Book
  • © 1993

Overview

Part of the book series: Computational Microelectronics (COMPUTATIONAL)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (5 chapters)

Keywords

About this book

It was about 1985 when both of the authors started their work using multigrid methods for process simulation problems. This happened in­ dependent from each other, with a completely different background and different intentions in mind. At this time, some important monographs appeared or have been in preparation. There are the three "classical" ones, from our point of view: the so-called "1984 Guide" [12J by Brandt, the "Multi-Grid Methods and Applications" [49J by Hackbusch and the so-called "Fundamentals" [132J by Stiiben and Trottenberg. Stiiben and Trottenberg in [132J state a "delayed acceptance, resent­ ments" with respect to multigrid algorithms. They complain: "Nevertheless, even today's situation is still unsatisfactory in several respects. If this is true for the development of standard methods, it applies all the more to the area of really difficult, complex applications." In spite of all the above mentioned publications and without ignoring important theoretical and practical improvements of multigrid, this situa­ tion has not yet changed dramatically. This statement is made under the condition that a numerical principle like multigrid is "accepted", if there exist "professional" programs for research and production purposes. "Professional" in this context stands for "solving complex technical prob­ lems in an industrial environment by a large community of users". Such a use demands not only for fast solution methods but also requires a high robustness with respect to the physical parameters of the problem.

Authors and Affiliations

  • Institut für Methodische Grundlagen, Gesellschaft für Mathematik und Datenverarbeitung mbH, Sankt Augustin, Federal Republic of Germany

    Wolfgang Joppich

  • Faculty of Electronic Engineering, University of Niš, Niš, Yugoslavia

    Slobodan Mijalković

Bibliographic Information

Publish with us