Skip to main content
  • Book
  • © 2016

Field-effect Self-mixing Terahertz Detectors

Authors:

  • Nominated as an Outstanding Ph.D. thesis by the Chinese Academy of Sciences
  • Built a comprehensive field-effect terahertz detector model which is applicable for detector optimization
  • Presents for the time the localized self-mixing effect and the polarity flip of the self-mixing current alone the channel
  • Covers detailed aspects of detector design, fabrication, characterization and simulation
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (7 chapters)

  1. Front Matter

    Pages i-xviii
  2. Introduction

    • Jiandong Sun
    Pages 1-18
  3. Applications

    • Jiandong Sun
    Pages 107-117
  4. Conclusions and Outlook

    • Jiandong Sun
    Pages 119-122
  5. Back Matter

    Pages 123-126

About this book

A comprehensive device model considering both spatial distributions of the terahertz field and the field-effect self-mixing factor has been constructed for the first time in the thesis. The author has found that it is the strongly localized terahertz field induced in a small fraction of the gated electron channel that plays an important role in the high responsivity. An AlGaN/GaN-based high-electron-mobility transistor with a 2-micron-sized gate and integrated dipole antennas has been developed and can offer a noise-equivalent power as low as 40 pW/Hz1/2 at 900 GHz. By further reducing the gate length down to 0.2 micron, a noise-equivalent power of 6 pW/Hz1/2 has been achieved. This thesis provides detailed experimental techniques anddevice simulation for revealing the self-mixing mechanism including a scanning probe technique for evaluating the effectiveness of terahertz antennas. As such, the thesis could be served as a valuable introduction towards further development of high-sensitivity field-effect terahertz detectors for practical applications.

Authors and Affiliations

  • Suzhou Inst. of Nano-tech & Nano-bionics, Chinese Academy of Sciences,, Suzhou, China

    Jiandong Sun

Bibliographic Information

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access