Skip to main content

High-Frequency Bipolar Transistors

  • Book
  • © 2003

Overview

  • Hot topic in modern microelectronics
  • Fast single and integrated transistors as well as integrated bipolar circuits are treated
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Series in Advanced Microelectronics (MICROELECTR., volume 11)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

  1. Introduction

  2. Physics and Modeling of High-Frequency Bipolar Transistors

  3. Circuits and Technology

Keywords

About this book

This book provides a rather comprehensive presentation of the physics and modeling of high-frequency bipolar transistors with particular emphasis given to silicon-based devices. I hope it will be found useful by those who do as well as by those who intend to work in the field, as it compiles and extends material presented in numerous publications in a coherent fashion. I've worked on this project for years and did my best to avoid errors. De­ spite all efforts it is possible that "something" has been overlooked during copy-editing and proof-reading. If you find a mistake please let me know. Michael Reisch Kempten, December 2002 Notation It is intended here to use the most widely employed notation, in cases where the standard textbook notation is different from the SPICE notation, the latter is used. In order to make formulas more readable, model parameters represented in SPICE by a series of capital letters are written here as one capital letter with the rest in the form of a subscript (e.g. XCJC is used here instead of the XCJC used in the SPICE input). Concerning the use of lower-case and capital letters, the following rules are applied: • Time-dependent large-signal quantities are represented by lower-case let­ ters. The variables 't, v and p therefore denote time-dependent current, voltage and power values.

Authors and Affiliations

  • FH Kempten, University of Applied Sciences, Kempten/Allgäu, Germany

    Michael Reisch

Bibliographic Information

Publish with us