Skip to main content

Dynamic Stochastic Optimization

  • Conference proceedings
  • © 2004

Overview

Part of the book series: Lecture Notes in Economics and Mathematical Systems (LNE, volume 532)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (16 papers)

  1. Dynamic Decision Problems under Uncertainty: Modeling Aspects

  2. Dynamic Stochastic Optimization in Finance

  3. Optimal Control Under Stochastic Uncertainty

Keywords

About this book

Uncertainties and changes are pervasive characteristics of modern systems involving interactions between humans, economics, nature and technology. These systems are often too complex to allow for precise evaluations and, as a result, the lack of proper management (control) may create significant risks. In order to develop robust strategies we need approaches which explic­ itly deal with uncertainties, risks and changing conditions. One rather general approach is to characterize (explicitly or implicitly) uncertainties by objec­ tive or subjective probabilities (measures of confidence or belief). This leads us to stochastic optimization problems which can rarely be solved by using the standard deterministic optimization and optimal control methods. In the stochastic optimization the accent is on problems with a large number of deci­ sion and random variables, and consequently the focus ofattention is directed to efficient solution procedures rather than to (analytical) closed-form solu­ tions. Objective and constraint functions of dynamic stochastic optimization problems have the form of multidimensional integrals of rather involved in­ that may have a nonsmooth and even discontinuous character - the tegrands typical situation for "hit-or-miss" type of decision making problems involving irreversibility ofdecisions or/and abrupt changes ofthe system. In general, the exact evaluation of such functions (as is assumed in the standard optimization and control theory) is practically impossible. Also, the problem does not often possess the separability properties that allow to derive the standard in control theory recursive (Bellman) equations.

Editors and Affiliations

  • Aero-Space Engineering and Technology, Federal Armed Forces University Munich, Neubiberg/Munich, Germany

    Kurt Marti

  • IIASA Laxenburg, Laxenburg/Wien, Austria

    Yuri Ermoliev

  • Institute of Statistics and Decision Support Systems (ISDS), University of Wien, Wien, Austria

    Georg Pflug

Bibliographic Information

Publish with us