Skip to main content

Spectroscopic Ellipsometry for Photovoltaics

Volume 1: Fundamental Principles and Solar Cell Characterization

  • Book
  • © 2018

Overview

  • Presents ellipsometry characterization of solar cell materials/devices
  • Provides easy-to-understand explanations of ellipsometry data analysis
  • Includes optical constants for all solar-cell component layers

Part of the book series: Springer Series in Optical Sciences (SSOS, volume 212)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (19 chapters)

  1. Fundamental Principles of Ellipsometry

  2. Characterization of Materials and Structures

Keywords

About this book

This book provides a basic understanding of spectroscopic ellipsometry, with a focus on characterization methods of a broad range of solar cell materials/devices, from traditional solar cell materials (Si, CuInGaSe2, and CdTe) to more advanced emerging materials (Cu2ZnSnSe4, organics, and hybrid perovskites), fulfilling a critical need in the photovoltaic community.

The book describes optical constants of a variety of semiconductor light absorbers, transparent conductive oxides and metals that are vital for the interpretation of solar cell characteristics and device simulations. It is divided into four parts: fundamental principles of ellipsometry; characterization of solar cell materials/structures; ellipsometry applications including optical simulations of solar cell devices and online monitoring of film processing; and the optical constants of solar cell component layers.


Editors and Affiliations

  • Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu, Japan

    Hiroyuki Fujiwara

  • Department of Physics and Astronomy, The University of Toledo, Toledo, USA

    Robert W. Collins

About the editors

Hiroyuki Fujiwara received the Ph.D. degree from Tokyo Institute of Technology. He was a research associate at The Pennsylvania State University. In 1998, he joined Electrotechnical laboratory, Ministry of International Trade and Industry, Japan. Later in 2007, he became a team leader of Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST) in Japan. He is currently a  professor in the Department of Electrical, Electronic and Computer Engineering, Gifu University. 

Robert W. Collins received the Ph.D. degree from Harvard University. He worked at BP America/Standard Oil Co. In 1992, he became a professor of Physics and Materials Research at The Pennsylvania State University. He is currently a Distinguished University Professor and NEG Endowed Chair of Silicate and Materials Science with the Department of Physics and Astronomy, University of Toledo. He co-directs the Center for Photovoltaics Innovation and Commercialization.

Bibliographic Information

Publish with us