Skip to main content

Nonlinear Control of Vehicles and Robots

  • Book
  • © 2011

Overview

  • Offers a unified approach of the dynamic models of ground, aerial and marine robots
  • The examples will help the reader to apply the presented control and modeling techniques in their research and development work
  • The influence of the presence of non-smooth nonlinearities on control performances of motion control systems is analyzed
  • Theoretical and practical aspects of the control algorithms are discussed in detail
  • Includes supplementary material: sn.pub/extras

Part of the book series: Advances in Industrial Control (AIC)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (12 chapters)

Keywords

About this book

Nonlinear Control of Vehicles and Robots develops a unified approach to the dynamic modeling of robots in terrestrial, aerial and marine environments. The main classes of nonlinear systems and stability methods are summarized and basic nonlinear control methods, useful in manipulator and vehicle control, are presented. Formation control of ground robots and ships is discussed.

The book also deals with the modeling and control of robotic systems in the presence of non-smooth nonlinearities. Robust adaptive tracking control of robotic systems with unknown payload and friction in the presence of uncertainties is treated.

Theoretical and practical aspects of the control algorithms under discussion are detailed. Examples are included throughout the book allowing the reader to apply the control and modeling techniques in their own research and development work. Some of these examples demonstrate state estimation based on the use of advanced sensors as part of the control system.

Reviews

From the reviews:

“The presented book first briefly outlines the most important nonlinear control algorithms that can be applied for the control of mechanical systems. … The book is aimed at researchers who are interested in modern control algorithms and advanced modeling techniques of the most common mechatronic systems: vehicles and robots.” (Bojidar Cheshankov, Zentralblatt MATH, Vol. 1236, 2012)

Authors and Affiliations

  • Control Engineering & Inform. Technology, Budapest Univ. of Technology & Economics, Budapest, Hungary

    Béla Lantos

  • Dept. Electrical Engineering, Sapientia Hungarian Univ. Transylvania, Targu Mures, Romania

    Lőrinc Márton

About the authors

Professor Béla Lantos is based at Budapest University of Technology and Economics, and is lead researcher for leads many scientific grants related to robot and vehicle control. Currently, He leads the ‘Advanced Control Theory and Artificial Intelligence Techniques of Autonomous Ground, Aerial, and Marine Robots’ research group, financed by Hungarian National Research program under grant No. OTKA K 71762.

Lorinc Márton is an assistant lecturer at Sapientia Hungarian University of Transylvania and is a grantee of Janos Bolyai postdoctoral scholarship, financed by the Hungarian Academy of Sciences. He is also a senior researcher in the OTKA K 71762 research program.

Bibliographic Information

Publish with us