Skip to main content

An Artificial Intelligence Approach to VLSI Routing

  • Book
  • © 1986

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

Routing of VLSI chips is an important, time consuming, and difficult problem. The difficulty of the problem is attributed to the large number of often conflicting factors that affect the routing quality. Traditional techniques have approached routing by ignoring some of these factors and imposing unnecessary constraints in order to make routing tractable. In addition to the imposition of these restrictions, which simplify the problems to a degree but at the same time reduce the routing quality, traditional approaches use brute force. They often transform the problem into mathematical or graph problems and completely ignore the specific knowledge about the routing task that can greatly help the solution. This thesis overcomes some of the above problems and presents a system that performs routing close to what human designers do. In other words it heavily capitalizes on the knowledge of human expertise in this area, it does not impose unnecessary constraints, it considers all the different factors that affect the routing quality, and most importantly it allows constant user interaction throughout the routing process. To achieve the above, this thesis presents background about some representative techniques for routing and summarizes their characteristics. It then studies in detail the different factors (such as minimum area, number of vias, wire length, etc.) that affect the routing quality, and the different criteria (such as vertical/horizontal constraint graph, merging, minimal rectilinear Steiner tree, etc.) that can be used to optimize these factors.

Authors and Affiliations

  • Carnegie-Mellon University, USA

    Rostam Joobbani

Bibliographic Information

Publish with us