Skip to main content

Mechanism of Functional Expression of F1-ATPase

  • Book
  • © 2021

Overview

  • Presents a new view of the mechanism of functional expression of ATP-driven motors
  • Elucidates four cases on the rotation of the central shaft in F1-ATPase in a unified theory
  • Explains ideas in straightforward terms rather than by mathematical equations

Part of the book series: SpringerBriefs in Molecular Science (BRIEFSMOLECULAR)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This book presents a new view of the mechanism of functional expression of ATP-driven motors (proteins or protein complexes). It is substantially different from the prevailing idea that the motor converts chemical energy to mechanical work. To facilitate understanding, the differences between the new and prevailing views are explained using many illustrations. The book is of interest to those who are not convinced of the notion of chemo–mechanical coupling. The claims presented are the following: The system, which comprises not only the motor but also water, does no mechanical work during the ATP hydrolysis cycle; a protein is moved or a protein in the complex is rotated by the entropic force generated by water. The highlight of the explanation in the book is that the mechanism of unidirectional rotation of the central shaft in F1-ATPase is discussed in detail on the basis of this new view. The hydration entropy of each β subunit to which a specific chemical compound (ATP, ADP and Pi, Pi, or nothing) is bound, the hydration entropy of the α3β3 complex, and the dependence of the hydration entropy of F1-ATPase on the orientation of the γ subunit play essential roles.


Authors and Affiliations

  • Institute of Advanced Energy, Kyoto University, Uji, Japan

    Masahiro Kinoshita

About the author

Masahiro Kinoshita received his Doctor of Engineering degree from Kyoto University in 1984. His research interests include statistical–mechanical theories of fluids (integral equation theories), hydrophobic hydration, unified elucidation of a variety of biological self-assembly processes, protein folding and unfolding, molecular recognition, mechanism of functional expression of ATP-driven motors, and thermostabilization of membrane proteins. He is currently a professor emeritus at Kyoto University and an invited researcher at Chiba University.

He has published 211 articles in internationally renowned journals such as Nature Chemical Biology, Journal of the American Chemical Society, and Physical Review Letters, to mention just a few. In addition, he has authored or made valuable contributions to several books in his field.



Bibliographic Information

Publish with us