Skip to main content

Idempotent Analysis and Its Applications

  • Book
  • © 1997

Overview

Part of the book series: Mathematics and Its Applications (MAIA, volume 401)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (4 chapters)

Keywords

About this book

The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In §1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .

Authors and Affiliations

  • Department of Mathematical Statistics, Nottingham Trent University, Nottingham, England

    Vassili N. Kolokoltsov

  • Institute of New Technologies, Moscow, Russia

    Vassili N. Kolokoltsov

  • Department of Physics, Moscow State University, Moscow, Russia

    Victor P. Maslov

Bibliographic Information

Publish with us