Skip to main content

Mathematical Foundations of Quantum Statistical Mechanics

Continuous Systems

  • Book
  • © 1995

Overview

Part of the book series: Mathematical Physics Studies (MPST, volume 17)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

This monograph is devoted to quantum statistical mechanics. It can be regarded as a continuation of the book "Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems" (Gordon & Breach SP, 1989) written together with my colleagues V. I. Gerasimenko and P. V. Malyshev. Taken together, these books give a complete pre­ sentation of the statistical mechanics of continuous systems, both quantum and classical, from the common point of view. Both books have similar contents. They deal with the investigation of states of in­ finite systems, which are described by infinite sequences of statistical operators (reduced density matrices) or Green's functions in the quantum case and by infinite sequences of distribution functions in the classical case. The equations of state and their solutions are the main object of investigation in these books. For infinite systems, the solutions of the equations of state are constructed by using the thermodynamic limit procedure, accord­ ing to which we first find a solution for a system of finitely many particles and then let the number of particles and the volume of a region tend to infinity keeping the density of particles constant. However, the style of presentation in these books is quite different.

Authors and Affiliations

  • Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, Ukraine

    D. Ya. Petrina

Bibliographic Information

Publish with us