Skip to main content

Molecular Physics and Hypersonic Flows

  • Book
  • © 1996

Overview

Part of the book series: Nato Science Series C: (ASIC, volume 482)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (52 chapters)

Keywords

About this book

Molecular Physics and Hypersonic Flows bridges the gap between the fluid dynamics and molecular physics communities, emphasizing the role played by elementary processes in hypersonic flows. In particular, the work is primarily dedicated to filling the gap between microscopic and macroscopic treatments of the source terms to be inserted in the fluid dynamics codes.
The first part of the book describes the molecular dynamics of elementary processes both in the gas phase and in the interaction with surfaces by using quantum mechanical and phenomenological approaches. A second group of contributions describes thermodynamics and transport properties of air components, with special attention to the transport of internal energy. A series of papers is devoted to the experimental and theoretical study of the flow of partially ionized gases. Subsequent contributions treat modern computational techniques for 3-D hypersonic flow. Non-equilibrium vibrational kinetics are then described, together with the coupling of vibration-dissociation processes as they affect hypersonic flows. Special emphasis is given to the interfacing of non-equilibrium models with computational fluid dynamics methods. Finally, the last part of the book deals with the application of direct Monte Carlo methods in describing rarefied flows.

Editors and Affiliations

  • Department of Chemistry and Centro di Studio per la Chimica dei Plasmi del CNR, University of Bari, Bari, Italy

    Mario Capitelli

Bibliographic Information

Publish with us