Skip to main content

CMOS Capacitive Sensors for Lab-on-Chip Applications

A Multidisciplinary Approach

  • Book
  • © 2010

Overview

  • This unique multidisciplinary book describes all the required components for the design of a CMOS capacitive biosensor
  • It offers an extensive recent review of literature on using CMOS processes for Lab-on-Chip applications
  • It emphasis on practical aspects of fully integrated capacitive biosensors
  • Includes supplementary material: sn.pub/extras

Part of the book series: Analog Circuits and Signal Processing (ACSP)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

1.1 Overview of Lab-on-Chip Laboratory-on-Chip (LoC) is a multidisciplinary approach used for the miniaturization, integration and automation of biological assays or procedures in analytical chemistry [1–3]. Biology and chemistry are experimental sciences that are continuing to evolve and develop new protocols. Each protocol offers step-by-step laboratory instructions, lists of the necessary equipments and required biological and/or chemical substances [4–7]. A biological or chemical laboratory contains various pieces of equipment used for performing such protocols and, as shown in Fig. 1.1, the engineering aspect of LoC design is aiming to embed all these components in a single chip for single-purpose applications. 1.1.1 Main Objectives of LoC Systems Several clear advantages of this technology over conventional approaches, including portability, full automation, ease of operation, low sample consumption and fast assays time, make LoC suitable for many applications including. 1.1.1.1 Highly Throughput Screening To conduct an experiment, a researcher fills a well with the required biological or chemical analytes and keeps the sample in an incubator for some time to allowing the sample to react properly. Afterwards, any changes can be observed using a microscope. In order to quickly conduct millions of biochemical or pharmacolo- cal tests, the researchers will require an automated highly throughput screening (HTS) [8], comprised of a large array of wells, liquid handling devices (e.g., mic- channel, micropump and microvalves [9–11]), a fully controllable incubator and an integrated sensor array, along with the appropriate readout system.

Authors and Affiliations

  • Dept. Electrical & Computer Engineering, McGill University, Montreal, Canada

    Ebrahim Ghafar-Zadeh

  • Dépt. Génie Informatique, Ecole Polytechnique de Montreal, Montreal, Canada

    Mohamad Sawan

About the authors

Ebrahim Ghafar-Zadeh received the BSc and MSc degrees in Electrical Engineering from KNT and Tehran Universities, Tehran, Iran, in 1992 and 1994, respectively. In 1994 he joints the electrical engineering department at SCU University, Ahvaz, Iran as faculty memeber. During 2004-2008, he pursued a PhD degree in electrical engineering at Ecole Polytechnique de Montreal, Canada. In January 2008 and September 2008, he received two fellowship award from NSERC Canada and ReSMiQ Quebec, Canada which allowed him to continue his research for fully integrated bacteria detection. The research interests of Dr. Ghafar-zadeh include the circuit and system design, implementation and packaging technologies for lab-on-chip applications.

Mohamad Sawan received his BSc in Electrical Engineering from Université Laval (1984), and MSc (1986) and PhD (1990) both in Electrical Engineering from Université de Sherbrooke. He then completed post-doctoral training at Montréal's McGill University in 1991, and in that same year, joined École Polytechnique de Montréal, where he is currently a Professor of Microelectronics. Dr. Sawan's scientific interests focus on the design and testing of mixed-signal (analog, digital and RF) circuits and systems; digital and analog signal processing; and the modelling, design, integration, assembly and validation of advanced wirelessly powered and controlled monitoring and measurement techniques. These topics are oriented toward biomedical implantable devices and telecommunications applications. Dr. Sawan is holder of the Canada Research Chair in Smart Medical Devices. He heads the Microsystems Strategic Alliance of Québec – ReSMiQ and is founder of the Eastern Canada Chapter of the IEEE-Solid State Circuits Society. He also founded the International IEEE-NEWCAS conference, co-founded the International Functional Electrical Stimulation Society, and founded the Polystim Neurotechnologies Laboratoryat Ecole Polytechnique. He is the editor of Springer mixed-signal letters, Chair of the IEEE Biomedical CAS (BioCAS) Technical Committee, and member of the Biotechnology Council representing the IEEE-CAS Society. He has been awarded seven patents. He received the Barbara Turnbull Award for spinal cord research, the Medal of Merit from the Lebanese President (2005), and the J.-A. Bombardier Award from the Association Francophone pour le savoir (ACFAS). Dr. Sawan is a Fellow of both the Canadian Academy of Engineering and the IEEE.

Bibliographic Information

  • Book Title: CMOS Capacitive Sensors for Lab-on-Chip Applications

  • Book Subtitle: A Multidisciplinary Approach

  • Authors: Ebrahim Ghafar-Zadeh, Mohamad Sawan

  • Series Title: Analog Circuits and Signal Processing

  • DOI: https://doi.org/10.1007/978-90-481-3727-5

  • Publisher: Springer Dordrecht

  • eBook Packages: Engineering, Engineering (R0)

  • Copyright Information: Springer Science+Business Media B.V. 2010

  • Hardcover ISBN: 978-90-481-3726-8Published: 22 March 2010

  • Softcover ISBN: 978-94-007-3180-6Published: 05 May 2012

  • eBook ISBN: 978-90-481-3727-5Published: 10 March 2010

  • Series ISSN: 1872-082X

  • Series E-ISSN: 2197-1854

  • Edition Number: 1

  • Number of Pages: X, 146

  • Topics: Circuits and Systems, Biotechnology, Biomedical Engineering and Bioengineering

Publish with us