Skip to main content
Book cover

Mixed Conducting Ceramic Membranes

Fundamentals, Materials and Applications

  • Book
  • © 2017

Overview

  • Comprehensively describes the fundamentals of mixed conducting ceramic membrane technology
  • Discusses the design of membrane materials and membrane modules
  • Reviews the applications of mixed conducting ceramic membranes for catalysis and clean energy that are currently being developed

Part of the book series: Green Chemistry and Sustainable Technology (GCST)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (10 chapters)

Keywords

About this book

This book is intended to bring together into a single book all aspects of mixed conducting ceramic membranes. It provides a comprehensive description of the fundamentals of mixed ionic-electronic conducting (MIEC) membranes from the basic theories and materials to fabrication and characterization technologies. It also covers the potential applications of MIEC membrane technology in industry. This book offers a valuable resource for all scientists and engineers involved in R&D on mixed conducting ceramic membrane technology, as well as other readers who are interested in catalysis in membrane reactor, solid state electrochemistry, solid oxide fuel cells, and related topics.

Xuefeng Zhu, PhD, is a Professor at State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Weishen Yang, PhD, is the team leader for Membrane Catalysis and New Catalytic Materials and a DICP Chair Professor at State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.

Authors and Affiliations

  • Dalian Institute of Chemical Physics, Dalian, China

    Xuefeng Zhu, Weishen Yang

About the authors

Prof. Xuefeng Zhu received his PhD from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences in 2006, and became a full professor at the same institute in 2014. His research interests include mixed conducting membranes for O2, H2 separation and production, cathode materials for intermediate-low-temperature solid oxide fuel cells, electrochemical oxygen reduction and evolution reactions for electrolyzing water and metal-air batteries, highly selective catalytic oxidation of light hydrocarbons to olefins, and catalytic oxidation reactions in inorganic membrane reactors. Prof. Zhu has published over 60 peer-reviewed scientific papers, H-index 24, has contributed to 2 book chapters, given more than 20 oral presentations at international and domestic conferences and workshops, and holds 11 patents.


Prof. Weishen Yang completed his PhD on catalysis at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences in 1990. After graduation, he started working at the same institute, and became a full professor in 1995. As a visiting scholar, he worked at the University of Birmingham (UK) in 1989 and University of Southern California (USA) in 2001. His research mainly focuses on the synthesis and application of inorganic membranes and new catalytic materials in solving energy related problems, which include (1) Alternative Energy: Oxygen permeable membranes for natural gas conversion; (2) Renewable Energy: Zeolite membranes for bio-fuel (ethanol/butanol)/water separation; (3) Clean Energy: Hydrogen permeable membranes for pure H2 production; (4) Advanced Energy: Hydrogen and/or oxygen permeable membranes used in solid oxide fuel cells (SOFC). Prof. Yang has produced over 280 refereed journal publications, 4 invited review articles, 4 book chapters, holds 40 patents and has given more than 30 invited lectures in academia and industry around the world.

Bibliographic Information

Publish with us