Skip to main content
Book cover

Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life

  • Conference proceedings
  • © 1986

Overview

Part of the book series: Nato ASI Subseries G: (ASIG, volume 8)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (26 papers)

Keywords

About this book

Inadvertent alterations of the earth's atmosphere by man's activities are now of regional and even global proportion. Increasing concern has been focused in the last decade on consequences of acid rain, carbon dioxide enrichment of the atmosphere and reduction of ozone in the upper atmosphere. The latter two problems are of truly global scale. This book focuses on the atmospheric ozone reduction problem and the potential consequences for plant life. unlike carbon dioxide enrichment, reduction of the total atmospheric ozone column has not yet taken place to a noticeable degree -- it is a problem of the future. The processes leading to ozone reduction involve time periods on the scale of decades. However, by the same token, if society finds ozone reduction to be unacceptable it will take even longer for the process to be reversed. Thus, anticipation of the consequences of ozone reduction is of obvious importance. Speculation of the possibility of ozone reduction first appeared in the early 1970's and was focused on the consequences of the injection of large quantities of nitrogen oxides into the upper atmosphere by supersonic aircraft flying at high altitudes. Other sources of nitrogen oxides originating from the earth's surface were also considered. With further refinement, the concerns of nitrogen oxide pollution of the upper atmosphere were diminished since the quantities likely to be involved were insufficient to cause a serious threat to the ozone layer.

Editors and Affiliations

  • Department of General Science, Oregon State University, Corvallis, USA

    Robert C. Worrest

  • Environmental Research Laboratory, U.S. Environmental Protection Agency, Corvallis, USA

    Robert C. Worrest

  • Department of Range Science and the Ecology Center Utah State University, Logan, USA

    Martyn M. Caldwell

Bibliographic Information

Publish with us