Skip to main content

Magnetic Bearings

Proceedings of the First International Symposium, ETHG Zurich, Switzerland, June 6–8, 1988

  • Conference proceedings
  • © 1989

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (36 papers)

  1. Applications in Physics

  2. Applications in Robotics

  3. Special Bearings

  4. Stabilization of Rotor Motion

Keywords

About this book

Magnetic Bearings are bearings where the suspension forces are generated magnetically without any contact. The advantages to modern machinery are obvious: no mechanical wear, no lubrication, potential for high rotor speed, accuracy, and high dynamic performance, new constructional solutions to a classical problem in machine dynamics. The realization of such bearings is in rapid progress. Examples for application areas are turbomachinery, centrifuges, vacuum techniques, machine tool spindles, chemical industry, medical devices, robotics, high speed drives, spacecraft equipment, con tactless actuators, vibration isolation. The Symposium is demonstrating the current state of the art in this developing field of mechatronics, showing actual research efforts, reporting on applications in the various areas, and discussing open questions. The main purpose of the Symposium has been to establish a common information basis for people working on magnetic bearings. It will point to promising areas, and it will help to facilitate decisions on research and development projects, and on investments for applications.

Editors and Affiliations

  • Institute of Mechanics, ETH Zurich, Zurich, Switzerland

    G. Schweitzer

Bibliographic Information

Publish with us