Skip to main content

The M/M/∞Service System with Ranked Servers in Heavy Traffic

  • Book
  • © 1984

Overview

Part of the book series: Lecture Notes in Economics and Mathematical Systems (LNE, volume 231)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

We are concerned here with a service facility consisting of a large (- finite) number of servers in parallel. The service times for all servers are identical, but there is a preferential ordering of the servers. Each newly arriving customer enters the lowest ranked available server and remains there until his service is completed. It is assumed that customers arrive according to a Poisson process of rate A , that all servers have exponentially distributed service times with rate ~ and that a = A/~ is large compared with 1. Generally, we are concerned with the stochastic properties of the random function N(s ,t) describing the number of busy servers among the first s ordered servers at time t. Most of the analysis is motivated by special applications of this model to telephone traffic. If one has a brunk line with s primary channels, but a large number (00) of secondary (overflow) channels, each newly arriving customer is assigned to one of the primary channels if any are free; otherwise, he is assigned to a secondary channel. The primary and secondary channels themselves could have a preferential ordering. For some purposes, it is convenient to imagine that they did even if an ordering is irrelevant.

Authors and Affiliations

  • Transportation Engineering and Operations Reserach, University of California, Berkeley, USA

    G. F. Newell

Bibliographic Information

Publish with us