Skip to main content

Numerical Solution of Elliptic Differential Equations by Reduction to the Interface

  • Book
  • © 2004

Overview

Part of the book series: Lecture Notes in Computational Science and Engineering (LNCSE, volume 36)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

During the last decade essential progress has been achieved in the analysis and implementation of multilevel/rnultigrid and domain decomposition methods to explore a variety of real world applications. An important trend in mod­ ern numerical simulations is the quick improvement of computer technology that leads to the well known paradigm (see, e. g. , [78,179]): high-performance computers make it indispensable to use numerical methods of almost linear complexity in the problem size N, to maintain an adequate scaling between the computing time and improved computer facilities as N increases. In the h-version of the finite element method (FEM), the multigrid iteration real­ izes an O(N) solver for elliptic differential equations in a domain n c IRd d with N = O(h- ) , where h is the mesh parameter. In the boundary ele­ ment method (BEM) , the traditional panel clustering, fast multi-pole and wavelet based methods as well as the modern hierarchical matrix techniques are known to provide the data-sparse approximations to the arising fully populated stiffness matrices with almost linear cost O(Nr log?Nr), where 1 d Nr = O(h - ) is the number of degrees of freedom associated with the boundary. The aim of this book is to introduce a wider audience to the use of a new class of efficient numerical methods of almost linear complexity for solving elliptic partial differential equations (PDEs) based on their reduction to the interface.

Authors and Affiliations

  • Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany

    Boris N. Khoromskij

  • Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Universität Heidelberg, Heidelberg, Germany

    Gabriel Wittum

Bibliographic Information

Publish with us