Skip to main content

Fuzzy Randomness

Uncertainty in Civil Engineering and Computational Mechanics

  • Book
  • © 2004

Overview

  • For the first time this book represents a coherent, overall concept for considering uncertainty in civil engineering and other disciplines of standard optimization

  • Comprehensive consideration of uncertainty in the numerical analysis, the safety assessment, and the design of stuctures

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

sections dealing with fuzzy functions and fuzzy random functions are certain to be of special interest. The reader is expected to be in command of the knowledge gained in a basic university mathematics course, with the inclusion of stochastic elements. A specification of uncertainty in any particular case is often difficult. For this reason Chaps. 3 and 4 are devoted solely to this problem. The derivation of fuzzy variables for representing informal and lexical uncertainty reflects the subjective assessment of objective conditions in the form of a membership function. Techniques for modeling fuzzy random variables are presented for data that simultaneously exhibit stochastic and nonstochastic properties. The application of fuzzy randomness is demonstrated in three fields of civil engineering and computational mechanics: structural analysis, safety assessment, and design. The methods of fuzzy structural analysis and fuzzy probabilistic structural analysis developed in Chap. 5 are applicable without restriction to arbitrary geometrically and physically nonlinear problems. The most important forms of the latter are the Fuzzy Finite Element Method (FFEM) and the Fuzzy Stochastic Finite Element Method (FSFEM).

Reviews

From the reviews:

"The subject of the book is the comprehensive consideration of uncertainty in the numerical analysis, the safety assessment, and the design of structures. … The book in particular is addressed to civil engineers … . But also for mechanical engineers … the book represents a suitable introduction to the problem of uncertainty modeling … . can be instrumental in broadening the interests and background of those who turn to it. The book demonstrates how one goes about taking account of uncertainty modeling and uncertainty models." (Current Engineering Practice – online, Vol. 47, 2004/2005)

"The book deals with a new and important subject of mathematical modeling in engineering, i.e. uncertainty models in civil engineering. It contains seven chapters and an extensive reference list. This work is recommended to engineers and scientists in the area of civil engineering, fuzzy analysis and the corresponding numerical methods." (Olivian Simionescu, Zentralblatt MATH, Vol. 1080, 2006)

"To my best knowledge, this is the first book that covers fuzzy randomness in a comprehensive way. The motivation of the authors to study fuzzy randomness was to deal with some difficult problems in the field of civil engineering and computational mechanics in a more realistic fashion. … this is an important book. I have no doubt that it will stimulate the use of fuzzy randomness not only in civil engineering and computational mechanics, but in other areas as well." (George J. Klir, International Journal of General Systems, Vol. 34 (3), 2005)

Authors and Affiliations

  • Institute of Structural Analysis (Lehrstuhl für Statik), Dresden University of Technology, Dresden, Germany

    Bernd Möller, Michael Beer

About the authors

Univ.-Prof. Dr.-Ing. habil. Bernd MÖLLER (* 1941): studies in civil engineering (University of Technology, Dresden), main studies in constructional and structural engineering. Since 1996: Professor for Structural Analysis (University of Technology, Dresden).
Dr.-Ing. Michael BEER (* 1970): studies in civil engineering (University of Technology, Dresden), main studies in constructional and structural engineering. Since 2003: project manager of the DFG research project BE 2570/1 for funding the own occupation.

Bibliographic Information

Publish with us