Skip to main content
Book cover

Abstract Parabolic Evolution Equations and their Applications

  • Book
  • © 2010

Overview

  • Fills the gaps of existing literature
  • Presents rigorous mathematical theories
  • Applies results focusing on various self-organization models
  • Author has studied abstract parabolic evolution equations and their applications to nonlinear diffusion equations and systems for more than 30 years
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Monographs in Mathematics (SMM)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (16 chapters)

Keywords

About this book

This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0

Authors and Affiliations

  • Graduate School of Engineering, Osaka University, Suita, Osaka, Japan

    Atsushi Yagi

Bibliographic Information

Publish with us