Skip to main content

Advanced Computer Simulation Approaches for Soft Matter Sciences III

  • Book
  • © 2009

Overview

  • Highest Impact Factor of all publications ranked by ISI within Polymer Science
  • Short and concise reports on physics and chemistry of polymers, each written by the world renowned experts
  • Still valid and useful after 5 or 10 years
  • The electronic version is available free of charge for standing order customers at: springer.com/series/12/
  • Includes supplementary material: sn.pub/extras

Part of the book series: Advances in Polymer Science (POLYMER, volume 221)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (3 chapters)

Keywords

About this book

“Soft matter” is nowadays used to describe an increasingly important class of - terials that encompasses polymers, liquid crystals, molecular assemblies building hierarchical structures, organic-inorganic hybrids, and the whole area of colloidal science. Common to all is that ?uctuations, and thus the thermal energy k T and B entropy, play an important role. “Soft” then means that these materials are in a state of matter that is neither a simple liquid nor a hard solid of the type studied in hard condensed matter, hence sometimes many types of soft matter are also named “c- plex ?uids. ” Soft matter, either of synthetic or biological origin, has been a subject of physical and chemical research since the early ?nding of Staudinger that long chain mo- cules exist. From then on, synthetic chemistry as well as physical characterization underwent an enormous development. One of the outcomes is the abundant pr- ence of polymeric materials in our everyday life. Nowadays, methods developed for synthetic polymers are being more and more applied to biological soft matter. The link between modern biophysics and soft matter physics is quite close in many respects. This also means that the focus of research has moved from simple - mopolymers to more complex structures, such as branched objects, heteropolymers (random copolymers, proteins), polyelectrolytes, amphiphiles and so on.

Editors and Affiliations

  • Institute for Computational Physics, Universität Stuttgart, Stuttgart

    Christian Holm

  • MPI fuer Polymerforschung, Mainz, Germany

    Kurt Kremer

Bibliographic Information

Publish with us