Skip to main content
  • Book
  • © 1989

Directed Models of Polymers, Interfaces, and Clusters: Scaling and Finite-Size Properties

Part of the book series: Lecture Notes in Physics (LNP, volume 338)

Buy it now

Buying options

Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (6 chapters)

  1. Front Matter

  2. Introduction

    Pages 1-2
  3. Polymers at surfaces

    Pages 61-75
  4. Summary

    Pages 116-117
  5. Back Matter

About this book

This monograph gives a detailed introductory exposition of research results for various models, mostly two-dimensional, of directed walks, interfaces, wetting, surface adsorption (of polymers), stacks, compact clusters (lattice animals), etc. The unifying feature of these models is that in most cases they can be solved analytically. The methods used include transfer matrices, generating functions, recurrence relations, and difference equations, and in some cases involve utilization of less familiar mathematical techniques such as continued fractions and q-series. The authors emphasize an overall view of what can be learned generally of the statistical mechanics of anisotropic systems, including phenomena near surfaces, by studying the solvable models. Thus, the concept of scaling and, where known, finite-size scaling properties are elucidated. Scaling and statistical mechanics of anisoptropic systems in general are active research topics. The volume provides a comprehensive survey of exact model results in this field.

Bibliographic Information

Buy it now

Buying options

Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access