Skip to main content

Diffusion in Solid Metals and Alloys / Diffusion in festen Metallen und Legierungen

  • Book
  • © 1990

Overview

Part of the book series: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology - New Series (LANDOLT 3, volume 26)

Part of the book sub series: Condensed Matter (LANDOLT 3)

This is a preview of subscription content, log in via an institution to check access.

Access this book

Hardcover Book USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (144 chapters)

Keywords

About this book

The interest in diffusion in solids is as old as physical metallurgy or materials science. It stems from application-oriented as well as from scientific reasons. First, a knowledge of diffusion is basic to an understanding of many microstructural changes that occur in solid matter at elevated temperatures. For processes like phase transformations, precipitation or dissolution of a second phase, recrystallization, oxidation, creep, annealing etc., solid state diffusion is fundamental and ubiquitous. The second reason for studying diffusion is to learn more about how atoms move in solid matter. Volume III/26 presents for the first time a comprehensive collection of diffusion data for solid metals and alloys. The critical compilation of data has resulted in tables and series of diagrams which show in 13 chapters data for the following properties: Self- and impurity-diffusion in metallic elements, self-diffusion in homogeneous binary alloys, chemical diffusion in binary and ternary alloys, diffusion in amorphous alloys, diffusion of interstitial foreign atoms like hydrogen, carbon, oxygen and nitrogen in metallic elements, mass and pressure dependence of diffusion, diffusion along dislocations, grain and interphase boundary diffusion, and diffusion on surfaces.

Bibliographic Information

Publish with us