Skip to main content
Book cover

Construction of Mappings for Hamiltonian Systems and Their Applications

  • Book
  • © 2006

Overview

  • Unique description of the mathematical physics of Hamiltonian systems and their application to plasma physics, chaos, dynamical systems, and electromagnetism

Part of the book series: Lecture Notes in Physics (LNP, volume 691)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (13 chapters)

Keywords

About this book

Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical problems described by Hamiltonian systems. It develops a new, mathematically-rigorous method to construct symplectic mappings which replaces the dynamics of continuous Hamiltonian systems by the discrete ones. Applications of the mapping methods encompass the chaos theory in non-twist and non-smooth dynamical systems, the structure and chaotic transport in the stochastic layer, the magnetic field lines in magnetically confinement devices of plasmas, ray dynamics in waveguides, etc. The book is intended for postgraduate students and researches, physicists and astronomers working in the areas of plasma physics, hydrodynamics, celestial mechanics, dynamical astronomy, and accelerator physics. It should also be useful for applied mathematicians involved in analytical and numerical studies of dynamical systems.

Reviews

From the reviews:

"The aim of this book is to introduce the reader into the modern theory of Hamiltonian mappings. The book starts by describing the classical methods and theorems such as Jacobi’s Theorem, action variables etc. After, the classical perturbation theory is explained. Many results are illustrated on concrete examples form physics and mechanics. The basic elements of KAM theory are explained for both smooth and non-smooth mappings. This makes the book a valuable source for specialists working with applications of discrete maps." (Alexei Tsygvintsev, Zentralblatt MATH, Vol. 1106 (8), 2007)

Authors and Affiliations

  • Institut für Plasmaphysik Forschungszentrum Jülich GmbH, Jülich, Germany

    Sadrilla S. Abdullaev

Bibliographic Information

Publish with us