Skip to main content
Book cover

Ion Transport through Biological Membranes

An Integrated Theoretical Approach

  • Book
  • © 1975

Overview

Part of the book series: Lecture Notes in Biomathematics (LNBM, volume 7)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (15 chapters)

  1. Introduction

  2. Classical Electrodiffusion Theories of Membrane Electrical Properties

  3. A Molecular Treatment of Transmembrane Ion Movement

Keywords

About this book

This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechanยญ isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electroยญ physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range transยญ mission of information in the nervous system, and to gain some inยญ sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties is reviewed briefly, and some facets of membrane behaviour that have been revealed since the appearance of their work are disยญ cussed. Part II examines the foundations of electrodiffusion theory, and the use of that theory in trying to develop quantitative explaยญ nationsof the observed membrane properties of excitable cells, in particular the squid giant axon. In addition, an ad hoc formulation of electrodiffusion theory including active transport is presented to illustrate the qualitative nature of cellular homeostasis with respect to intracellular ionic concentrations and membrane potential, and cellular responses to prolonged stimUlation.

Authors and Affiliations

  • Department of Physiology, McGill University, Montreal, Canada

    Michael C. Mackey

Bibliographic Information

  • Book Title: Ion Transport through Biological Membranes

  • Book Subtitle: An Integrated Theoretical Approach

  • Authors: Michael C. Mackey

  • Series Title: Lecture Notes in Biomathematics

  • DOI: https://doi.org/10.1007/978-3-642-81008-4

  • Publisher: Springer Berlin, Heidelberg

  • eBook Packages: Springer Book Archive

  • Copyright Information: Springer-Verlag Berlin ยท Heidelberg 1975

  • Softcover ISBN: 978-3-540-07532-5Published: 01 December 1975

  • eBook ISBN: 978-3-642-81008-4Published: 13 March 2013

  • Series ISSN: 0341-633X

  • Series E-ISSN: 2196-9981

  • Edition Number: 1

  • Number of Pages: X, 242

  • Topics: Mathematics, general

Publish with us