Skip to main content

Numerical Modelling and Experimental Testing of Heat Exchangers

  • Book
  • © 2019

Overview

  • Presents numerical modelling and experimental testing of heat exchangers with a particular focus on finned-tube cross-flow devices
  • Covers the entire range of issues related to the single-phase convective heat transfer in heat exchangers, including design and operation calculations, as well as experimental testing of the devices
  • Highlights the experimental determination of correlations for the gas- and the liquid-side Nusselt number that enable calculation of mean heat transfer coefficients in the whole heat exchanger
  • Provides a detailed discussion of the procedures for determining the uncertainty of physical quantities or parameters determined indirectly, including parameters found using the least squares method based on a high number of measuring series

Part of the book series: Studies in Systems, Decision and Control (SSDC, volume 161)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (19 chapters)

  1. Heat Transfer Theory

  2. Methods of the Heat Exchanger Modelling

Keywords

About this book

This book presents new methods of numerical modelling of tube heat exchangers, which can be used to perform design and operation calculations of exchangers characterized by a complex flow system. It also proposes new heat transfer correlations for laminar, transition and turbulent flows. A large part of the book is devoted to experimental testing of heat exchangers, and methods for assessing the indirect measurement uncertainty are presented. Further, it describes a new method for parallel determination of the Nusselt number correlations on both sides of the tube walls based on the nonlinear least squares method and presents the application of computational fluid dynamic (CFD) modeling to determine the air-side Nusselt number correlations. Lastly, it develops a control system based on the mathematical model of the car radiator and compares this with the digital proportional-integral-derivative (PID) controller. The book is intended for students, academics and researchers, as well as for designers and manufacturers of heat exchangers.

Authors and Affiliations

  • Faculty of Environmental Engineering, Cracow University of Technology, Cracow, Poland

    Dawid Taler

About the author

Professor Dawid Taler, D.Sc., Ph.D. received his doctoral degree in 2002, and postdoctoral degree in 2009 from the Faculty of Mechanical Engineering and Robotics of the University of Science and Technology (AGH) in Cracow. Since 2011 he has been working as a professor at the Faculty of Environmental Engineering at the Cracow University of Technology. Currently, he manages the Department of Thermal Processes, Air Protection and Waste Utilization at the Cracow University of Technology. In 2016 he received the title of professor. He specializes in heat transfer and heating systems, including experimental methods in heat and fluid science. A particular research and development interest is the mathematical modelling and experimental investigation of heat exchangers and energy machines and devices. He is an author of 3 and co-author of 5 monographs and scientific books, 3 of which have been published in English. He has also published 30 chapters in international and national books. He is the author or co-author of over 290 articles in the field of heat transfer, numerical modelling of heat and flow processes, and energy and power technologies. Professor Taler also specializes in thermal and flow measurements, including heat flux measurements, determination of heat transfer coefficient and inverse heat transfer problems, especially the dynamics of heat exchangers and steam generators.

Bibliographic Information

Publish with us