Skip to main content

Nano-scale Heat Transfer in Nanostructures

Toward Understanding and Engineering Thermal Transport ​

  • Book
  • © 2018

Overview

  • Presents atomistic numerical methods for nanoscale heat transfer from both scientific and engineering perspectives
  • Reviews the most recent important literature in a clear presentation by world-class professionals
  • Serves as an exceptional resource for students interested in modern heat transfer topics

Part of the book series: SpringerBriefs in Applied Sciences and Technology (BRIEFSAPPLSCIENCES)

Part of the book sub series: SpringerBriefs in Thermal Engineering and Applied Science (BRIEFSTHERMAL)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

The book introduces modern atomistic techniques for predicting heat transfer in nanostructures, and discusses the applications of these techniques on three modern topics. The study of heat transport in screw-dislocated nanowires with low thermal conductivity in their bulk form represents the knowledge base needed for engineering thermal transport in advanced thermoelectric and electronic materials, and suggests a new route to lower thermal conductivity that could promote thermoelectricity. The study of high-temperature coating composite materials facilitates the understanding of the role played by composition and structural characterization, which is difficult to approach via experiments. And the understanding of the impact of deformations, such as bending and collapsing on thermal transport along carbon nanotubes, is important as carbon nanotubes, due to their exceptional thermal and mechanical properties, are excellent material candidates in a variety of applications, including thermal interface materials, thermal switches and composite materials.

Authors and Affiliations

  • Department of Civil, Environmental and Geo- Engineering, University of Minnesota, Minneapolis, USA

    Jihong Al-Ghalith

  • Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA

    Traian Dumitrică

About the authors

Traian Dumitrica is an Associate Professor of Mechanical Engineering at the University of Minnesota. Jihong Al-Ghalith is currently a Post-doctoral Associate in the department of Civil, Environmental, and Geo- Engineering at the University of Minnesota. She obtained her PhD in 2017 in Mechanical Engineering at the University of Minnesota.




Bibliographic Information

Publish with us