Skip to main content
Book cover

Problems in Classical Electromagnetism

157 Exercises with Solutions

  • Textbook
  • © 2017

Overview

  • Presents a large set of new problems in electromagnetism, inspired by real phenomena and applications
  • Provides full and detailed solutions including physical insight and discussions
  • Includes advanced topics but without undue mathematical complexity
  • Explicitly links problems to real world phenomena and applications

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (26 chapters)

Keywords

About this book

This book contains 157 problems in classical electromagnetism, most of them new and original compared to those found in other textbooks. Each problem is presented with a title in order to highlight its inspiration in different areas of physics or technology, so that the book is also a survey of historical discoveries and applications of classical electromagnetism. The solutions are complete and include detailed discussions, which take into account typical questions and mistakes by the students. Without unnecessary mathematical complexity, the problems and related discussions introduce the student to advanced concepts such as unipolar and homopolar motors, magnetic monopoles, radiation pressure, angular momentum of light, bulk and surface plasmons, radiation friction, as well as to tricky concepts and ostensible ambiguities or paradoxes related to the classical theory of the electromagnetic field. With this approach the book is both a teaching tool for undergraduates in physics, mathematics and electric engineering, and a reference for students wishing to work in optics, material science, electronics, plasma physics.

Authors and Affiliations

  • Department of Physics “Enrico Fermi”, University of Pisa, Pisa, Italy

    Andrea Macchi, Giovanni Moruzzi, Francesco Pegoraro

About the authors

Andrea Macchi is a research scientist at CNR/INO, Pisa, Italy, and lecturer of classical electromagnetism and of plasma physics at the Physics Department of the University of Pisa. His research interests include superintense laser-matter interactions, laser-driven acceleration of particles, high field plasmonics, nonlinear plasma dynamics. He has published about 80 papers on peer reviewed journals and the textbook "A Superintense Laser-Plasma Interaction Primer" (Springer, 2013).

Giovanni Moruzzi is a retired associated professor from the Physics Department of the University of Pisa, where he is still teaching classical electromagnetism. His research interests cover atomic and molecular spectroscopy, in particular the assignment of dense molecular spectra involving internal torsional rotation. He has published more than 70 papers on peer-reviewed journals and has been coeditor and coauthor of two scientific books.

Francesco Pegoraro is a full professor at the PhysicsDepartment of the University of Pisa where he teaches classical electromagnetism and plasma physics and a corresponding member of the "Accademia dei Lincei'' in Rome. His research interests cover different areas of theoretical plasma physics ranging from magnetically confined plasmas, space and astrophysical plasmas to laser produced relativistic plasmas. He has published some 300 research papers on peer reviewed journals.

Bibliographic Information

Publish with us