Skip to main content
Book cover

Photon Management Assisted by Surface Waves on Photonic Crystals

  • Book
  • © 2017

Overview

  • Provides a shortcut to relevant applications of electromagnetic surface modes on dielectric structures
  • Demonstrates that "alternative plasmonics" is affordable by means of purely dielectric structures
  • Describes experimental setups and provides useful hints on how to build them
  • Includes supplementary material: sn.pub/extras

Part of the book series: PoliTO Springer Series (PTSS)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (3 chapters)

Keywords

About this book

This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical circuitry, and lighting.

Authors and Affiliations

  • DISAT, Politecnico di Torino DISAT, Torino, Italy

    Angelo Angelini

About the author

Angelo Angelini is a Post-doctoral Fellow in the Department of Applied Science and Technology (DISAT) at the Polytechnic of Turin, where he carries out teaching and research focusing on the development of 3D imaging techniques and the characterization of optically driven devices. Dr. Angelini graduated in Physics Engineering at the Polytechnic of Turin in 2011. During the course of his studies, he spent 6 months at the Biomedical Engineering Department of Columbia University. On the basis of his research activity at the National Institute of Metrological Research (INRIM) and at the Polytechnic of Turin, he completed his doctorate in electronic devices in 2015, for which he was awarded the Best PhD Student Award 2015. Dr. Angelini is the author of more than 15 papers in highly regarded scientific journals and is a reviewer for several international journals. He is co-inventor of a patent and has been an invited speaker at international and national conferences. 

Bibliographic Information

Publish with us