Skip to main content

Asymptotic Approximations for the Sound Generated by Aerofoils in Unsteady Subsonic Flows

  • Book
  • © 2015

Overview

  • Nominated as an outstanding Ph.D. thesis by the University of Cambridge, UK
  • Detailed analytic investigation into noise generated by aerofoils with realistic geometries
  • Provides results for high-frequency interactions, where numerical methods struggle
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

Keywords

About this book

This thesis investigates the sound generated by solid bodies in steady subsonic flows with unsteady perturbations, as is typically used when determining the noise generated by turbulent interactions. The focus is predominantly on modelling the sound generated by blades within an aircraft engine, and the solutions are presented as asymptotic approximations. Key analytical techniques, such as the Wiener-Hopf method, and the matched asymptotic expansion method are clearly detailed. The results allow for the effect of variations in the steady flow or blade shape on the noise generated to be analysed much faster than when solving the problem numerically or considering it experimentally.

Authors and Affiliations

  • Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom

    Lorna Ayton

Bibliographic Information

Publish with us