Skip to main content
Book cover

Production Yield of Muon-Induced Neutrons in Lead

Measured at the Modane Underground Laboratory

  • Book
  • © 2015

Overview

  • Nominated as an outstanding Ph. D. thesis by the Karlsruhe Institute of Technology Germany
  • Verifies the reliability of the Monte Carlo package Geant4 in simulating the production of muon-induced neutrons
  • Extends the scarce data on the production yield of muon-induced neutrons in lead by a precise and well documented measurement
  • Develops a detailed model of the detector response on muon-induced neutrons for an extensive investigation of systematic uncertainties
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

The work presented in this book is a major step towards understanding and eventually suppressing background in the direct search for dark matter particles scattering off germanium detectors. Although the flux of cosmic muons is reduced by many orders of magnitude in underground laboratories, the remaining energetic muons induce neutrons through various processes, neutrons that can potentially mimic a dark matter signal. This thesis describes the measurement of muon-induced neutrons over more than 3 years in the Modane underground laboratory. The data are complemented by a thorough modeling of the neutron signal using the GEANT4 simulation package, demonstrating the appropriateness of this tool to model these rare processes. As a result, a precise neutron production yield can be presented. Thus, future underground experiments will be able to reliably model the expected rate of muon-induced neutrons, making it possible to develop the necessary shielding concept to suppress this background component.

Authors and Affiliations

  • Inst. of Atomic and Subatomic Physics, Vienna University of Technology, Vienna, Austria

    Holger Kluck

About the author

Dr. Holger Kluck received his Ph.D. at the Karlsruhe Institute of Technology in 2013. Within the EDELWEISS and EURECA collaborations, he investigated the production of muon-induced neutrons both via dedicated measurements at the Modane underground laboratory and in comparison with Monte Carlo models. Since 2014, he is a postdoctoral researcher at the Vienna University of Technology and at the Institute of High Energy Physics of the Austrian Academy of Sciences. Searching for dark matter remains the major topic of his research interests, bringing his experince in background investigations into the CRESST experiment. In addition, he is developping electronics and readout concepts for future dark matter searches such as EURECA.

Bibliographic Information

Publish with us