Skip to main content
Book cover

Equations of Motion in Relativistic Gravity

  • Book
  • © 2015

Overview

  • Most comprehensive monograph on the subject matter
  • Edited and authored by leading specialists in the field
  • Closely connects theory and observations
  • Includes supplementary material: sn.pub/extras

Part of the book series: Fundamental Theories of Physics (FTPH, volume 179)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (26 chapters)

Keywords

About this book

 The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations.

Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted.

This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who like to enter this field.

Editors and Affiliations

  • ZARM University of Bremen, Bremen, Germany

    Dirk Puetzfeld, Claus Lämmerzahl

  • Max-Planck-Institut für Gravitationsphysik, Golm, Germany

    Bernard Schutz

Bibliographic Information

Publish with us