Skip to main content

Correlation Force Spectroscopy for Single Molecule Measurements

  • Book
  • © 2015

Overview

  • Nominated as an outstanding theses by Virginia Tech
  • Introduces the dynamic new technique for correlation force spectroscopy (CFS)
  • Details the significance of CFS in polymer physics and chemistry
  • Explains the measurement capability in the area of high frequency rheology and single molecule dynamic measurements
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This thesis addresses the development of a new force spectroscopy tool, correlation force spectroscopy (CFS) for the measurement of the properties of very small volumes of material (molecular to µm3) at kHz-MHz frequency range. CFS measures the simultaneous thermal fluctuations of two closely-spaced atomic force microscopy (AFM) cantilevers.  CFS then calculates the cross-correlation in the thermal fluctuations that gives the mechanical properties of the matter that spans the gap of the two cantilevers. The book also discusses development of CFS, its advantages over AFM, and its application in single molecule force spectroscopy and micro-rheology.

Authors and Affiliations

  • Department of Chemical Engineering, Virginia Tech, Blacksburg, USA

    Milad Radiom

About the author

Milad Radiom received his PhD in Chemical Engineering at Virginia Tech in 2014, after MEng and BSc in Thermal and Fluids Engineering and Mechanical Engineering respectively from Nanyang Technological University and Amirkabir University of Technology. Thereafter, he was appointed as a postdoctoral research associate in Laboratory of Colloid and Surface Chemistry, University of Geneva.  His research interests are physical chemistry of polymers, colloids and surfaces as related to single molecule force spectroscopy, micro-rheology and surface forces.

Bibliographic Information

Publish with us