Skip to main content
  • Textbook
  • © 2015

Optimal Interconnection Trees in the Plane

Theory, Algorithms and Applications

  • The first comprehensive book on the geometric Steiner tree problem since the 1990s
  • Clearly written proofs, supported by 120 color figures
  • Includes both the underlying mathematical theory and algorithms for Steiner trees, with an emphasis on exact solutions

Part of the book series: Algorithms and Combinatorics (AC, volume 29)

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (5 chapters)

  1. Front Matter

    Pages i-xvii
  2. Euclidean and Minkowski Steiner Trees

    • Marcus Brazil, Martin Zachariasen
    Pages 1-82
  3. Fixed Orientation Steiner Trees

    • Marcus Brazil, Martin Zachariasen
    Pages 83-150
  4. Rectilinear Steiner Trees

    • Marcus Brazil, Martin Zachariasen
    Pages 151-218
  5. Steiner Trees with Other Cost Functions and Constraints

    • Marcus Brazil, Martin Zachariasen
    Pages 219-299
  6. Steiner Trees in Graphs and Hypergraphs

    • Marcus Brazil, Martin Zachariasen
    Pages 301-317
  7. Back Matter

    Pages 319-344

About this book

This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions.

Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees. 

The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.

Reviews

“The book presents an interesting and quickly developing area of research and will be useful for researchers working in this area and for those wanting to learn more about geometric Steiner tree problems.” (Yongtang Shi, Mathematical Reviews, December, 2015)

“The focus of this monograph is the geometric Steiner tree problem, i.e., how to optimally connect, in a geometric plane, a collection of n given terminals, together with an additional set of Steiner points, in terms of a measuring metric. … monograph is also intended as a textbook at a graduate level, thus comes with a decent collection of exercises, with varying difficulty degrees, at the end of each chapter, mostly assigned in a relevant context throughout the main text.” (Zhizhang Shen, zbMATH 1319.05044, 2015)

Authors and Affiliations

  • Melbourne School of Engineering, The University of Melbourne Dept. of Electrical and Electronic Engineering, Parkville, Australia

    Marcus Brazil

  • Dept. of Computer Science (DIKU), University of Copenhagen, Copenhagen, Denmark

    Martin Zachariasen

About the authors

Marcus Brazil is Associate Professor and Reader at the Melbourne School of Engineering, The University of Melbourne, with a background in pure mathematics. He has worked on Steiner trees and network optimization problems for about 18 years, and has written more than 60 papers in this area, both on the theory of optimal network design and on industrial applications to Wireless Sensor Networks, Telecommunications, VLSI Physical Design, and Underground Mining Planning.

Martin Zachariasen is Head of Department and Professor at the Department of Computer Science, University of Copenhagen. He has worked on heuristics and exact methods for classical NP-hard problems, such as the geometric Steiner Tree Problem, as well as other optimization problems. His general research interests are in experimental algorithmics and computational combinatorial optimization, in particular related to VLSI design. As well as writing more than 40 papers on these topics, he is one of the developers of GeoSteiner, which is by far the most efficient software for solving a range of geometric Steiner tree problems.

Bibliographic Information

Buy it now

Buying options

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access