Skip to main content

Non-Linear Optical Response in Atoms, Molecules and Clusters

An Explicit Time Dependent Density Functional Approach

  • Book
  • © 2014

Overview

  • Presents new and established techniques
  • For practitioners of theoretical models
  • A good companion to established texts
  • Suitable for automatic high throughput calculations
  • Includes supplementary material: sn.pub/extras

Part of the book series: SpringerBriefs in Molecular Science (BRIEFSMOLECULAR)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Keywords

About this book

The aim of this brief is to present, in sufficient detail, a non-perturbative technique for calculating optical hyperpolarizabilities. The ability to efficiently compute hyperpolarizabilities, for a variety of different molecular systems, makes this brief invaluable for those engaged in the computational design of new electro-optical materials. The resulting computation is very predictable and suitable for automation, in contrast to perturbative methods that typically rely on iterative methods. The methodology which is wholly applicable to atoms, molecules, clusters (and with some modifications) to condensed matter, is described and illustrated at a level that is accessible to theoreticians and supplemented with details that should be of interest to practitioners.

Authors and Affiliations

  • Physics and Astronomy, Vanderbilt University, Nashville, USA

    Vladimir Goncharov

Bibliographic Information

Publish with us