Skip to main content
Birkhäuser

Number Theoretic Methods in Cryptography

Complexity lower bounds

  • Book
  • © 1999

Overview

Part of the book series: Progress in Computer Science and Applied Logic (PCS, volume 17)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (14 chapters)

  1. Preliminaries

  2. Approximation and Complexity of the Discrete Logarithm

  3. Complexity of Breaking the Diffie—Hellman Cryptosystem

  4. Other Applications

  5. Concluding Remarks

Keywords

About this book

The book introduces new techniques which imply rigorous lower bounds on the complexity of some number theoretic and cryptographic problems. These methods and techniques are based on bounds of character sums and numbers of solutions of some polynomial equations over finite fields and residue rings. It also contains a number of open problems and proposals for further research. We obtain several lower bounds, exponential in terms of logp, on the de­ grees and orders of • polynomials; • algebraic functions; • Boolean functions; • linear recurring sequences; coinciding with values of the discrete logarithm modulo a prime p at suf­ ficiently many points (the number of points can be as small as pI/He). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the right­ most bit of the discrete logarithm and defines whether the argument is a quadratic residue. We also obtain non-trivial upper bounds on the de­ gree, sensitivity and Fourier coefficients of Boolean functions on bits of x deciding whether x is a quadratic residue. These results are used to obtain lower bounds on the parallel arithmetic and Boolean complexity of computing the discrete logarithm. For example, we prove that any unbounded fan-in Boolean circuit. of sublogarithmic depth computing the discrete logarithm modulo p must be of superpolynomial size.

Reviews

"This volume gives a thorough treatment of the complexity of the discrete logarithm problem in a prime field, as well as related problems. The final chapter on further directions gives an interesting selection of problems."

--Zentralblatt Math

Authors and Affiliations

  • School of Mathematics, Physics, Computing and Electronics, Macquarie University, Australia

    Igor Shparlinski

Bibliographic Information

Publish with us