Skip to main content

Decision-making Strategies for Automated Driving in Urban Environments

  • Book
  • © 2020

Overview

  • Nominated as an outstanding PhD thesis by Universidad Politécnica de Madrid, Spain
  • Proposes a novel decision-making and planning architecture for autonomous vehicle navigation
  • Describes both theoretical and experimental validations on real urban-like environments

Part of the book series: Springer Theses (Springer Theses)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (8 chapters)

Keywords

About this book

This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.


Authors and Affiliations

  • Centre for Automation and Robotics (CSIC-UPM), Spanish National Research Council, Madrid, Spain

    Antonio Artuñedo

About the author

Dr. Antonio Artuñedo is currently a postdoctoral researcher in the AUTOPIA group at the Centre for Automation and Robotics (CSIC-UPM) in Madrid, Spain. He received a B.Sc. in Electrical Engineering from the Universidad de Castilla–La Mancha, Spain in 2011 and a M.Sc. in Industrial Engineering from the Universidad Carlos III de Madrid in 2014. In 2019, he received his PhD in Automation and Robotics at the Technical University of Madrid (UPM), Spain in the AUTOPIA Program. His PhD degree was awarded with the "Cum Laude" distinction and the International Mention. During his pre doctoral period, he made a research stay at the Integrated Vehicle Safety group at TNO, Netherlands, in 2017. He joined the Centre for Automation and Robotics (CSIC-UPM) in 2013, where he has been working on both national and European research projects in the scope of autonomous vehicles. Antonio has published and peer-reviewed multiple journal and conference articles focused on this research field. His research interests include system modelling and simulation, intelligent control, motion planning and decision-making systems.

       


Bibliographic Information

Publish with us