Skip to main content

Ultrafast Supercontinuum Generation in Transparent Solid-State Media

  • Book
  • © 2019

Overview

  • Describes both fundamental physical principles and practical examples of supercontinuum generation
  • Provides a comprehensive review of recent literature on ultrafast supercontinuum generation in transparent solid-state media
  • Places special emphasis on the most recent experimental results in the field

Part of the book series: SpringerBriefs in Physics (SpringerBriefs in Physics)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (6 chapters)

  1. Physical Picture of Supercontinuum Generation

  2. Overview of the Experimental Results

Keywords

About this book

This book presents the underlying physical picture and an overview of the state of the art of femtosecond supercontinuum generation in various transparent solid-state media, ranging from wide-bandgap dielectrics to semiconductor materials, and across various parts of the optical spectrum, from the ultraviolet to the mid-infrared. A particular emphasis is placed on the most recent experimental developments: multioctave supercontinuum generation with pumping in the mid-infrared spectral range, spectral control, power and energy scaling of broadband radiation and the development of simple, flexible and robust pulse compression techniques, which deliver few optical cycle pulses and which could be readily implemented in a variety of modern ultrafast laser systems. The expected audience includes graduate students, professionals and scientists working in the field of laser-matter interactions and ultrafast nonlinear optics.

Authors and Affiliations

  • Laser Research Center, Vilnius University, Vilnius, Lithuania

    Audrius Dubietis

  • Centre de Physique Théorique, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, Paris, France

    Arnaud Couairon

About the authors

Audrius Dubietis graduated from Vilnius University in 1989, and was awarded a PhD in 1996. He has been professor in the Department of Quantum Electronics, Laser Research Center, Vilnius University, since 2006. His areas of research areas include nonlinear optics, laser physics, atmospheric phenomena, physics, optics, and astronomy. In 1992, together with G. Jonušauskas and A. Piskarskas, he proposed a method of parametric amplification of phase-modulated light pulses, which is implemented by the most important ultra-powerful laser centers worldwide. He has published more than 90 scientific articles in the peer-reviewed literature.

Arnaud Couairon is a research director at the CNRS. He studied at Ecole Normale Supérieure in Paris and did his Ph.D. at Ecole Polytechnique (1997) on the dynamics of open shear flows. Since 1997, he has been working on ultrashort laser pulse filamentation and associated phenomena. He developed a virtual numerical laboratory for simulating the nonlinear propagation of ultrashort laser pulses in gases, liquids, or solids. His research interests include laser-matter interaction, ultrafast and nonlinear optics, and plasma physics.


Bibliographic Information

Publish with us