Skip to main content
  • Book
  • © 2011

Fatigue of Fiber-reinforced Composites

  • Describes the fatigue behavior of several types of composite materials - Presents basic fatigue issues, as well as innovative theories in a very comprehensive way - Gives novel methods for modelling/predicting fatigue life

Part of the book series: Engineering Materials and Processes (EMP)

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

This is a preview of subscription content, log in via an institution to check for access.

Table of contents (7 chapters)

  1. Front Matter

    Pages i-xiv
  2. Introduction to the Fatigue of Fiber-Reinforced Polymer Composites

    • Anastasios P. Vassilopoulos, Thomas Keller
    Pages 1-23
  3. Experimental Characterization of Fiber-Reinforced Composite Materials

    • Anastasios P. Vassilopoulos, Thomas Keller
    Pages 25-67
  4. Statistical Analysis of Fatigue Data

    • Anastasios P. Vassilopoulos, Thomas Keller
    Pages 69-85
  5. Fatigue of Adhesively-Bonded GFRP Structural Joints

    • Anastasios P. Vassilopoulos, Thomas Keller
    Pages 141-154
  6. Macroscopic Fatigue Failure Theories for Multiaxial Stress States

    • Anastasios P. Vassilopoulos, Thomas Keller
    Pages 155-197
  7. Life Prediction Under Multiaxial Complex Stress States of Variable Amplitude

    • Anastasios P. Vassilopoulos, Thomas Keller
    Pages 199-232
  8. Back Matter

    Pages 233-238

About this book

Fatigue has long been recognized as a mechanism that can provoke catastrophic material failure in structural applications and researchers are now turning to the development of prediction tools in order to reduce the cost of determining design criteria for any new material. Fatigue of Fiber-reinforced Composites explains these highly scientific subjects in a simple yet thorough way.

Fatigue behavior of fiber-reinforced composite materials and structural components is described through the presentation of numerous experimental results. Many examples help the reader to visualize the failure modes of laminated composite materials and structural adhesively bonded joints. Theoretical models, based on these experimental data, are demonstrated and their capacity for fatigue life modeling and prediction is thoroughly assessed.

Fatigue of Fiber-reinforced Composites gives the reader the opportunity to learn about methods for modeling the fatigue behavior of fiber-reinforced composites, about statistical analysis of experimental data, and about theories for life prediction under loading patterns that produce multiaxial fatigue stress states. The authors combine these theories to establish a complete design process that is able to predict fatigue life of fiber-reinforced composites under multiaxial, variable amplitude stress states. A classic design methodology is presented for demonstration and theoretical predictions are compared to experimental data from typical material systems used in the wind turbine rotor blade industry.

Fatigue of Fiber-reinforced Composites also presents novel computational methods for modeling fatigue behavior of composite materials, such as artificial neural networks and genetic programming, as a promising alternative to the conventional methods. It is an ideal source of information for researchers and graduate students in mechanical engineering, civil engineering and materials science.

Authors and Affiliations

  • School of Architecture, Civil and Enviro, (ENAC), ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, Lausanne, Switzerland

    Anastasios P. Vassilopoulos, Thomas Keller

About the authors

Dr Anastasios P. Vassilopoulos is a research and teaching associate of the Composite Construction Laboratory (CCLab) at the Swiss Federal Institute of Technology (EPFL) in Lausanne. He obtained his PhD in 2001 from the Department of Mechanical Engineering and Aeronautics of the University of Patras, Greece. Since 1996 he has worked as a research engineer in competitive European research projects in the field of wind energy. His expertise is in fatigue of composites under complex, irregular stress states. He has introduced a multiaxial fatigue failure criterion for fiber-reinforced composites and he has proposed a fatigue life prediction methodology for composite materials under spectrum fatigue complex loading patterns. Dr Vassilopoulos has been a member of the Technical Chamber of Greece since 1996, and several scientific societies, such as the European Society for Composite Materials (ESCM), and the European Structural Integrity Society (ESIS).

Prof. Dr. Thomas Keller is a full professor at EPFL and the Director of the Composite Construction Laboratory (CCLab), which he founded in 2000. His research work is focused on fiber-reinforced polymer (FRP) composite and hybrid materials with an emphasis on lightweight multifunctional structures. He is a founding and council member of the International Institute for FRP in Construction (IIFC) and a founding and executive committee member of the Composite Bridge Alliance Europe (COBRAE).

Bibliographic Information

Buy it now

Buying options

eBook USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access