Skip to main content

Mathematical and Numerical Modelling of Heterostructure Semiconductor Devices: From Theory to Programming

  • Textbook
  • © 2009

Overview

  • Entirely self-contained: the basic ideas of quantum mechanics and statistical mechanices are introduced and developed and numerical techniques, such as multigrids and genetic computing, are explained in a manner that is comprehensible to readers who have had no previous contact with these subjects

  • Case studies show how the numerical techniques can be tailored to the specific problems of device modelling

  • Includes sections of computer code, written in C++, and written in a simple and transparent way so that the reader can re-write it in his or her own favourite programming language

  • Includes supplementary material: sn.pub/extras

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (15 chapters)

  1. Overview and physical equations

  2. Mathematical and numerical methods

Keywords

About this book

Part of my lecturing work in the School of Mathematics at the University of Leeds involved teaching quantum mechanics and statistical mechanics to mathematics undergraduates, and also mathematical methods to undergraduate students in the School of Electronic and Electrical Engineering at the University. The subject of this book has arisen as a result of research collaboration on device modelling with members of the School of Electronic and Electrical Engineering. I wanted to write a book which would be of practical help to those wishing to learn more about the mathematical and numerical methods involved in heteroju- tion device modelling. I have introduced only a comparatively small number of t- ics, and the reader may think that other important topics should have been included. But of the topics which I have introduced, I hope that I have given the reader some practical advice concerning the implementation of the methods which are discussed. This practical advice includes demonstrating how the implementation of the me- ods may be tailored to the speci?c device being modelled, and also includes some sections of computer code to illustrate this implementation. I have also included some background theory regarding the origins of the routines.

Reviews

From the reviews:

“The book covers a wide spectrum of topics that are fundamental for modelling and simulation of semiconductor electron devices … . It is addressed to undergraduate and graduate students in mathematics and electrical engineering as well as researchers who would like to get different perspectives on the subject. … The monograph is self-contained since a standard background in calculus is enough to read it. This is surely a good textbook for Ph.D. students in applied mathematics.” (Vittorio Romano, Mathematical Reviews, Issue 2011 e)

“This well-written book involves the basic physical theory of semiconductor device modelling and the numerical methods to solve the corresponding equations. … Problems are formulated to improve the skill of the reader … . In order to support the reader, in the implementation of the methods, some simple codes written in C++ are included. … A great advantage of this monograph consists in the presentation of the whole cycle of semiconductor device modelling … .” (Georg Hebermehl, Zentralblatt MATH, Vol. 1252, 2012)

Authors and Affiliations

  • Dept. Mathematics, University of Leeds, Leeds, United Kingdom

    E.A.B. Cole

Bibliographic Information

Publish with us