Skip to main content
Book cover

Spectral Finite Element Method

Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures

  • Book
  • © 2008

Overview

  • First to apply SFEM to inhomogeneous and anisotropic structures in a unified and systematic manner
  • Readers will gain a complete understanding of how to formulate Spectral Finite Element; learn about wave behaviour in inhomogeneous and anisotropic media; and, be able to design some diagnostic tools for monitoring the health of a structure
  • The theory is supported by tables, figures and graphs; all the numerical examples are so designed to bring out the essential wave behaviour in these complex structures
  • Includes supplementary material: sn.pub/extras

Part of the book series: Computational Fluid and Solid Mechanics (COMPFLUID)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (11 chapters)

Keywords

About this book

Wave propagation is an exciting ?eld having applications cutting across many disciplines. In the ?eld of structural engineering and smart structures, wave propagation based tools have found increasing applications especially in the areaofstructuralhealthmonitoringandactivecontrolofvibrationsandnoise. Inaddition,therehasbeentremendousprogressintheareaofmaterialscience, wherein a new class of structural materials is designed to meet the parti- lar application. In most cases, these materials are not isotropic as in metallic structures. They are either anisotropic (as in the case of laminated composite structures) or inhomogeneous (as in the case of functionally graded mate- als). Analysis of these structures is many orders more complex than that of isotropic structures. For many scientists/engineers, a clear di?erence between structural dynamics and wave propagation is not evident. Traditionally, a structural designer will not be interested in the behavior of structures beyond certain frequencies, which are essentially at the lower end of the frequency scale. For such situations, available general purpose ?nite element code will satisfy the designer’s requirement. However, currently, structures are required tobedesignedtosustainverycomplexandharshloadingenvironments. These loadings are essentially multi-modal phenomena and their analysis falls under the domain of wave propagation rather than structural dynamics. Evaluation of the structural integrity of anisotropic and inhomogeneous structures s- jected to such loadings is a complex process. The currently available analysis tools are highly inadequate to handle the modeling of these structures. In this book, we present a technique called the “Spectral Finite Element Method”,whichwebelievewilladdresssomeoftheshortcomingsoftheexistinganalysis tools.

Reviews

From the reviews:

"The book deals with wave propagation and related problems of identification and control for anisotropic composites with particular emphasis on laminated and graded structures. It is intended for graduate and senior undergraduate students and researchers in engineering disciplines. … The book presents some interesting results in material sciences. The researchers in this area will find it useful in a number of applications." (Fiazud Din Zaman, Zentralblatt MATH, Vol. 1145, 2008)

Authors and Affiliations

  • Department of Aerospace Engineering, Indian Institute of Science C.V Raman Avenue, Bangalore, India

    S. Gopalakrishnan, D. Roy Mahapatra

  • General Motors India, Bangalore, India

    A. Chakraborty

About the authors

Prof. S. Gopalakrishnan is an Associate Professor at the Indian Institute of Science, Bangalore, India. He has a decade of experience in applying wave based techniques for solving various structural engineering related problems. He is internationally recognized as one of the experts in the field, and is one of the few people responsible for popularizing the use of SFEM through his research publications and presentations.

Dr A. Chakraborty is a Senior Researcher at General Motors India.

Dr Roy Mahapatra is an Assistant Professor at the Indian Institute of Science, Bangalore, India. His research activities are related to the mechanics and dynamics of solid-state engineering materials and structures, and the study of complex systems.

Bibliographic Information

Publish with us