Skip to main content

Time-Varying Systems and Computations

  • Book
  • © 1998

Overview

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (15 chapters)

  1. Introduction

  2. Realization

  3. Interpolation and Approximation

  4. Factorization

Keywords

About this book

Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari­ able s or z and it is analytic in a large part of the complex plane. Many important prop­ erties of the system for which it is a transfer function are related to its analytic prop­ erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi­ e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi­ mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular.

Authors and Affiliations

  • DIMES, Delft University of Technology, Delft, The Netherlands

    Patrick Dewilde, Alle-Jan Veen

Bibliographic Information

Publish with us