Skip to main content

Physical and Chemical Mechanisms in Molecular Radiation Biology

  • Book
  • © 1991

Overview

Part of the book series: Basic Life Sciences (BLSC, volume 58)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 16.99 USD 39.99
Discount applied Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (19 chapters)

  1. Introduction to the Problem

  2. Radiological Physics

  3. Early Chemical Events

  4. Models of Radiation Effects

  5. Molecular Radiation Biology

Keywords

About this book

The fundamental understanding of the production of biological effects by ionizing radiation may well be one of the most important scientific objectives of mankind; such understanding could lead to the effective and safe utilization of the nuclear energy option. In addition, this knowledge will be of immense value in such diverse fields as radiation therapy and diagnosis and in the space program. To achieve the above stated objective, the U. S. Department of Energy (DOE) and its predecessors embarked upon a fundamental interdisciplinary research program some 35 years ago. A critical component of this program is the Radiological and Chemical Physics Program (RCPP). When the RCPP was established, there was very little basic knowledge in the fields of physics, chemistry, and biology that could be directly applied to understanding the effects of radiation on biological systems. Progress of the RCPP program in its first 15 years was documented in the proceedings of a conference held at Airlie, Virginia, in 1972. At this conference, it was clear that considerable progr:ess had been made in research on the physical and chemical processes in well-characterized systems that could be used to understand biological effects. During this period of time, most physical knowledge was obtained for the gas phase because the technology and instru­ mentation had not progressed to the point that measurements could be made in liquids more characteristic of biological materials.

Editors and Affiliations

  • Pacific Northwest Laboratories, Richland, USA

    William A. Glass

  • U.S. Department of Energy, Germantown, USA

    Matesh N. Varma

Bibliographic Information

Publish with us