Skip to main content

Statics and Dynamics of Alloy Phase Transformations

  • Book
  • © 1994

Overview

Part of the book series: NATO Science Series B: (NSSB, volume 319)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (57 chapters)

  1. Statics and Dynamics of Alloy Phase Transformations Opening Remarks

  2. Experiment and Phenomenology

    1. Invited Papers

    2. Contributed Papers

Keywords

About this book

The study of phase transformations in substitutional alloys, including order­ disorder phenomena and structural transformations, plays a crucial role in understanding the physical and mechanical properties of materials, and in designing alloys with desired technologically important characteristics. Indeed, most of the physical properties, including equilibrium properties, transport, magnetic, vibrational as well as mechanical properties of alloys are often controlled by and are highly sensitive to the existence of ordered compounds and to the occurrence of structural transformations. Correspondingly, the alloy designer facing the task of processing new high-performance materials with properties that meet specific industrial applications must answer the following question: What is the crystalline structure and the atomic configuration that an alloy may exhibit at given temperature and concentration? Usually the answer is sought in the phase-diagram of a relevant system that is often determined experimentally and does not provide insight to the underlying mechanisms driving phase stability. Because of the rather tedious and highly risky nature of developing new materials through conventional metallurgical techniques, a great deal of effort has been expended in devising methods for understanding the mechanisms contrOlling phase transformations at the microscopic level. These efforts have been bolstered through the development of fully ab initio, accurate theoretical models, coupled with the advent of new experimental methods and of powerful supercomputer capabilities.

Editors and Affiliations

  • Lawrence Livermore National Laboratory, Livermore, USA

    Patrice E. A. Turchi, Antonios Gonis

Bibliographic Information

Publish with us